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Previous  event-related  brain  potential  (ERP)  investigations  have  demonstrated  that  single  bouts  of  phys-
ical activity  have  transient  benefits  to aspects  of cognitive  control.  However,  this  line  of research  has  yet
to explore  goal  maintenance.  ERPs  were  collected  using  a within-participants  design  with  young-adults
following  30-min  of  both  moderate  walking  and  a  non-exercise  control  session.  Participants  completed
three  conditions  of  an  AX-continuous  performance  task  (AX-CPT)  that  targeted  goal  maintenance  pro-
xercise
vent-related brain potentials (ERPs)
3
2
ognitive function

cesses, which  were  placed  under  greater  cognitive  demand  when  contexts  were  conflicting,  as  indexed
by  modulation  of  the  N2  and  P3  components.  Following  exercise,  individuals  exhibited  increased  accu-
racy  for  target  trials,  and  P3  amplitude  was  greater  at midline-parietal  sites  for  both  target  trials  and
non-target  trials.  These  results  suggest  that  a  single  bout  of  aerobic  exercise  may  facilitate  goal  main-
tenance  processes  and  enable  individuals  to  better  inhibit  extraneous  neural  activity  to  allocate  greater
attentional  resources  towards  the  updating  and  revision  of goal  representations.
In recent years, a growing number of reports have demonstrated
he beneficial effects of single bouts of physical activity on tran-
ient changes in cognitive control across the lifespan (Hillman et al.,
003, 2009; Kamijo et al., 2009; Lambourne and Tomporowski,
010), with much of the evidence stemming from functional neu-
oimaging techniques such as event-related brain potentials (ERPs).
ncreases in the amplitude of the P3 component (i.e., P300 or
3b), which is elicited when individuals attend to or discriminate
etween stimuli (Polich and Kok, 1995), have been observed follow-

ng exercise and suggest a greater propensity to inhibit neuronal
ctivity unrelated to the task at hand, and facilitate attentional
rocessing (Polich, 2007). Such evidence provides support for the
evelopment of programs designed to promote health-related fit-
ess (Sallis et al., 1997; Stewart et al., 2004) and combat the growing
umber of individuals engaging in sedentary and unfit lifestyles
Flegal et al., 2010; Pate et al., 2006). Goal maintenance, which
s necessary for the updating of internal contextual representa-
ions that influence planning and direct behavior (Braver and Barch,

002), remains one aspect of cognitive control that has not been
xamined in the acute exercise literature.
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Previous studies investigating goal maintenance have largely
focused on participant’s performance during the AX-continuous
performance task (AX-CPT; Paxton et al., 2008), which has also been
widely incorporated into research on attentional vigilance (Riccio
and Reynolds, 2001). The AX-CPT involves correctly responding to
target trials that occur when the letter “X” (correct-probe) is imme-
diately preceded by the letter “A” (correct-cue). Non-target trials
occur when probes are letters other than X (referred to collectively
as “Y”) and/or cues are letters other than A (referred to collectively
as “B”). Thus, participants encounter four types of trials: AX, AY, BX,
and BY (Braver and Barch, 2002). Additional research has demon-
strated that ERP components such as the P3, can be modulated
by, and are sensitive to, changes in stimulus context across mul-
tiple versions of the AX-CPT (Dias et al., 2003). Accordingly, ERP
data were collected during a 3-condition AX-CPT following a sin-
gle 30 min  aerobic exercise bout, relative to a non-exercise control
session. AX-CPT conditions consisted of varying trial probabilities
to manipulate local and global stimulus contexts. It was  hypothe-
sized that following exercise participants would exhibit larger P3
amplitude and shorter P3 latency for probes of AX and AY trials. Fur-
ther, this increase was expected to be selectively larger when global
and local contexts were conflicting and greater cognitive demand
is placed on goal maintenance processes.

During the first visit, thirty-seven undergraduate students

(18 females, age = 19.7 ± 1.3 years; see Table 1) provided demo-
graphic information and completed a small neuropsychological
battery before undergoing a modified Balke protocol (American
College of Sports Medicine, 2010) to determine maximal oxygen
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http://www.sciencedirect.com/science/journal/03010511
http://www.elsevier.com/locate/biopsycho
mailto:mscudde2@illinois.edu
mailto:chhillma@illinois.edu
dx.doi.org/10.1016/j.biopsycho.2011.12.009


M.R. Scudder et al. / Biological Psychology 89 (2012) 528– 531 529

Table 1
Mean (SD) values for participant demographics and exercise data.

Measure All participants Males Females

Age (years) 19.7 (1.3) 20.2 (1.5) 19.1 (.9)
K-BIT (IQ) 105.5 (7.4) 105.1 (7.7) 105.8 (7.2)
BMI (kg/m2) 23.1 (2.6) 23.8 (2.9) 22.3 (2.0)
VO2max (ml/kg/min) 47.2 (7.3) 51.2 (5.4) 43.1 (6.8)
Baseline HR (bpm) 72.1 (9.6) 72.5 (9.5) 71.6 (9.7)
HRmax (bpm) 193.0 (8.5) 194.7 (8.3) 191.1 (8.5)
Postrest HR (bpm) 70.4 (12.4) 70.2 (11.4) 70.7 (13.8)
Postexercise HR (bpm) 72.5 (10.9) 73.4 (10.3) 72.1 (11.7)

Note: HRmax is the maximum heart rate achieved during the cardiorespiratory fitness
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est; Postrest HR is the heart rate prior to cognitive testing on the rest day; Postex-
rcise HR is the heart rate prior to cognitive testing after a single bout of aerobic
xercise.

onsumption. During the second and third visits, participants
ere counterbalanced into two different experimental groups such

hat half of the participants received the non-exercise control
ession prior to the aerobic exercise session, and vice versa. Dur-
ng the non-exercise control session participants sat and quietly
ead the university daily newspaper for 30 min  while heart rate
HR) was recorded every 2 min  and ratings of perceived exertion
RPE; Borg, 1970) were collected every 6 min. During the exer-
ise session participants completed 30 min  of aerobic exercise on

 motor driven treadmill at an intensity of 60% of maximal HR
M = 117.2 ± 5.7 bpm), which has been suggested to offer the great-
st cognitive benefits (Kamijo et al., 2004), while HR and RPE were
ecorded every 2 min. Time was also recorded from the cessation
f each experimental session to when participants began their first
X-CPT practice block (exercise: M = 20.2 ± 6.4 min; non-exercise
ontrol: M = 23.5 ± 8.1 min; t(36) = 1.5, p = .15). During this time, HR
eturned to within 10% of baseline levels following exercise.

Electroencephalographic (EEG) activity was recorded in an
xtended montage based on the International 10-10 system
Chatrian et al., 1985) as participants completed three conditions
f the AX-CPT, which manipulated the frequency of the cue–probe
airings, such that one trial type was presented the majority of the
ime (64%) while the other three trial types were less probable (12%
ach). This resulted in AX-64, AY-64, and BX-64 conditions, with
he name corresponding to the trial that was presented 64% of the
ime. Participants were instructed to make a corresponding button
ress using a response pad as quickly and accurately as possible for
X trials. Participants received two blocks of each condition (six

otal blocks), with each block consisting of 175 randomized trials
hich were comprised of 5 cm tall white letters presented at a 2◦

isual angle for 100 ms  on a black background. Block order was ran-
omized and counterbalanced across all participants, with 1 min
f rest provided between each block. Recordings were referenced
o averaged mastoids (M1, M2), with AFz as the ground electrode,
nd impedances <10 k�. Continuous data were digitized at a sam-
ling rate of 500 Hz, amplified 500× with a DC to 70 Hz filter, and a
0 Hz notch filter was applied using a Neuroscan Synamps ampli-
er (Neuro, Inc., Charlotte, NC). Offline data reduction included
lectrooculographic correction using a spatial filter (Compumedics
euroscan, 2003), and all trials with a response error or artifact
xceeding ±75 �V were rejected. The P3 component was  quantified
s the maximum positive deflection occurring within a 300–600 ms
atency window. Repeated measure MANOVAs were conducted for
ehavioral and ERP data, with all factors treated as dependent vari-
bles. Analyses with three or more within-subjects levels used
he Greenhouse–Geisser statistic and significance levels were set
t p = .05. Post hoc comparisons were conducted using Bonferroni

orrection.

The 3-condition AX-CPT successfully altered the cognitive
emand placed on goal maintenance processes as indexed
y longer RTs for AX trials when global and local stimulus

Fig. 1. Behavioral data indicating: (a) modulations in AX trial RT across the 3 task
conditions, (b) decreased AX trial accuracy in the AY condition, (c) decreased AY
trial accuracy in the AX condition, and (d) a combined increase in AX trial accuracy
across all conditions following exercise.
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he  left, while BX and BY trials are shown on the right.
ontexts were conflicting, t(36) ≥ 5.8, p ≤ .001, d ≥ .54; an effect that
as most prominent in the AY-64 condition (due to the build-
p of a prepotent response to the probe; see Fig. 1a). Accuracy
ata provided additional support for this notion with participants
ing from Fz to Pz. P3 components to the probe of AX and AY trials can be seen on
demonstrating decreased AX accuracy in the AY-64 condition (see
Fig. 1b), t(36) ≥ 2.9, p ≤ .01, d ≥ .46, and producing significantly
more AY errors in the AX-64 condition (see Fig. 1c), t(36) ≥ 3.3,
p ≤ .01, d ≥ .69. The current findings are also consonant with
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revious ERP investigations of cognitive control following moder-
te aerobic exercise. Although P3 latency remained stable, increases
n P3 amplitude were observed across all conditions for probes of
Y trials at Cz and CPz sites, t(36) ≥ 2.9, p ≤ .01, d ≥ .33, and for
Y and AX trials at the Pz site (see Fig. 2), t(36) ≥ 2.6, p ≤ .015,

 ≥ .30, when compared to the non-exercise control session. Con-
rary to the a priori hypothesis this effect occurred similarly across
ll task conditions, thus the exercise findings appear general rather
han selective. Participants also exhibited a small, yet significant
ncrease in target trial accuracy (see Fig. 1d), t(36) = 2.3, p < .025,

 = .32. Observed increases in P3 amplitude suggest a greater allo-
ation of attentional resources when trials engender the updating
nd maintenance of stimulus context to sustain accurate goal rep-
esentations in support of task performance (Braver et al., 2005;
onchin and Coles, 1988).

The findings from the current study coincide with current meta-
nalytic reviews, which suggest that physical activity has a small,
ut positive effect on cognition (Etnier et al., 1997; Tomporowski,
003). Although the current design of the AX-CPT was conducive
or investigating goal maintenance processes, it did not allow
or large changes in performance (made evident from the high
ccuracy scores). As such, one might expect that acute exercise-
elated effects may  increase when participants encounter more
ifficult task situations (Hillman et al., 2003). A further limitation
f the current study was the absence of a baseline condition to
erve as a control for the non-exercise resting condition. How-
ver, care was taken in controlling for exercise-induced arousal
nd choosing an appropriate resting condition that kept partic-
pants engaged and awake. The pattern of results suggests that

 single bout of moderate aerobic exercise may  be beneficial
efore engaging in tasks that rely on goal maintenance. Simi-

ar evidence involving other cognitive processes and scholastic
erformance (Best, 2010; Hillman et al., 2011; Lambourne and
omporowski, 2010) is continuing to mount despite the seemingly
nclear impact on public health. Future research should continue
o pursue the different aspects of cognition that are impacted by
cute exercise, and determine how these effects persist over multi-
le exercise bouts or vary with levels of physical fitness. Developing

 broad understanding of these relationships could have consid-
rable implications for organizations and programs that strive for
uperior cognitive aptitude, and promote the adequate health of
ndividuals.
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